Indecomposables Live in All Smaller Lengths

نویسنده

  • KLAUS BONGARTZ
چکیده

We show that there are no gaps in the lengths of the indecomposable objects in an abelian k-linear category over a field k provided all simples are absolutely simple. To derive this natural result we prove that any distributive minimal representation-infinite k-category is isomorphic to the linearization of the associated ray category which is shown to have an interval-finite universal cover with a free fundamental group so that the well-known theory of representation-finite algebras applies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Bottleneck Distance for $2$-D Interval Decomposable Modules

Computation of the interleaving distance between persistence modules is a central task in topological data analysis. For 1-D persistence modules, thanks to the isometry theorem, this can be done by computing the bottleneck distance with known efficient algorithms. The question is open for most n-D persistence modules, n > 1, because of the well recognized complications of the indecomposables. H...

متن کامل

Directly Indecomposables in Semidegenerate Varieties of Connected po-Groupoids

We study varieties with a term-definable poset structure, po-groupoids. It is known that connected posets have the strict refinement property (SRP). In [7] it is proved that semidegenerate varieties with the SRP have definable factor congruences and if the similarity type is finite, directly indecomposables are axiomatizable by a set of first-order sentences. We obtain such a set for semidegene...

متن کامل

The Extended Module of Indecomposables

We construct a generalization of the usual module of indecomposables for the mod 2 cohomology of a finite //-space. Structure theorems are obtained regarding how the Steenrod algebra acts on this module.

متن کامل

Fixed Point Sets for Permutation Modules

Let A = kG, the group algebra of some finite group where the characteristic of the field k divides |G|. In contrast to working over the complex field, the kGmodules are not usually semisimple. If a Sylow p-subgroup of G is not cyclic then there are infinitely many indecomposable kG-modules, and we usually enjoy little control over the category of such modules. It is therefore an important probl...

متن کامل

The Left Part and the Auslander-reiten Components of an Artin Algebra

The left part LA of the module category of an artin algebra A consists of all indecomposables whose predecessors have projective dimension at most one. In this paper, we study the Auslander-Reiten components of A (and of its left support Aλ) which intersect LA and also the class E of the indecomposable Ext-injectives in the addditive subcategory addLA generated by LA.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013